Ak máte e-shop alebo retailovú sieť, chcete svoj biznis inovovať, posunúť na iný level a uvažujete nad využitím technológie AI, ste na správnom mieste.
V tretej časti sme si povedali, akú infraštruktúru budete potrebovať a tiež to, že AI sa nedá aplikovať bez kvalitného tímu. V poslednej časti blogu sa pozrieme na príklady, kde vám môže AI reálne pomôcť a dáme vám jedno priateľské varovanie.
Vďaka AI môžete vo vašom biznise posilniť prakticky všetky obchodné funkcie. Riešenia v podobe získania a analýzy potrebných dát či aplikácie dostupných modelov strojového učenia sa dajú realizovať pomerne ľahko (samozrejme, za predpokladu dôsledného dodržania pravidiel, o ktorých sme hovorili v predošlých častiach blogu) a odzrkadlia sa vo väčšej pridanej hodnote, napríklad v spomalení úbytku zákazníkov.
Pripravili sme pre vás štyri konkrétne scenáre využitia AI v maloobchode, aby ste získali lepšiu predstavu, ako to funguje v praxi.
V tomto prípade riešite prognózu dopytu, plánovanie tovaru či doplňovanie skladu.
Nedostatok tovaru na sklade predstavuje najväčšiu príčinu straty predaja a nespokojnosť zákazníkov. Súčasný globálny celosvetový priemer nedostatočných zásob je 8 %. Aspoň tretina zákazníkov preto nakúpi tovar u konkurenta a následkom je nielen zníženie predaja, ale aj potenciálna strata pri ďalšom predaji.
Druhým veľkým problémom sú nadmerné zásoby, čiže vopred nakúpené položky, ktoré zvyšujú nároky na vaše investície. V konečnom dôsledku vedú k zľavám z donútenia a tie sa následne odzrkadlia v prevádzkových maržiach.
Ak sa rozhodnete aplikovať dômyselný algoritmus strojového učenia pre prognózovanie dopytu, ktorý bude na vytvorenie kvalitných a dôveryhodných prognóz brať do úvahy interné a externé dáta, získate lepšiu kontrolu nad tým, kedy, čo a v akých množstvách by ste mali mať naskladnené.
Získate tak konkurenčnú výhodu nad svojimi súpermi a je vysoko pravdepodobné, že od konkurencie k vám prídu noví zákazníci.
Algoritmy strojového učenia pre optimalizáciu cien pre vás budú analyzovať pružnosť ceny tovary bez vplyvu na objem predaja.
Väčšina predajcov totiž nastavuje obchodné prirážky pri stanovovaní cien produktov ručne pomocou metódy cost–plus alebo Keystone. Tieto metodiky naceňovania na základe ponuky sú menej efektívne, ako varianty založené na dopyte.
To znamená, že tovar by mal byť nacenený podľa toho, koľko je zákazník ochotný zaplatiť v pomere s odporúčanou koncovou cenou alebo jednotkovou nákupnou cenou pre maloobchodníka.
Ďalším efektívnym využitím AI v maloobchode je vytváranie individuálnych marketingových kampaní. Keďže väčšina predajcov každoročne (alebo sezónne) prichádza s rovnakým marketingovým modelom a rovnakou cenou pre každého zákazníka, výsledkom sú opakujúce sa sezónne zľavy.
Tento typ jednotného prístupu sa už čoskoro dramaticky zmení. Práve tu vám strojové učenie môže pomôcť určiť optimálnu, dobre cielenú a individualizovanú marketingovú komunikáciu a správnu cenu pre špecifické skupiny zákazníkov, s možnosťou cielenia až na úroveň konkrétneho zákazníka.
Nielenže vďaka tomu zvýšite mieru zákazníckych reakcií, ale zároveň môžete efektívne optimalizovať maržu. Z našich skúseností totiž vieme, že niektorí zákazníci skôr reagujú na menšie zľavy. Je to teda ideálny nástroj na posilňovanie motivácie k nákupu.
Individuálna propagácia prostredníctvom dobre nastaveného manažmentu vzťahov so zákazníkmi a s podporou AI vám zvýši návratnosť marketingových investícií, ktoré ste na jednotlivé kampane vynaložili.
Dostupné komunikačné platformy a sofistikované AI riešenia vám dnes umožňujú priamo spojiť vaše obchodné prevádzky s digitálnym svetom. Pre zákazníkov tak vytvárate zdieľanú skúsenosť naprieč rôznymi systémami (voláme to Omni-Channel-Experience).
Pomáha to zvyšovať predaj pomocou kombinácie osobnej skúsenosti v kamennej predajni s AI asistenciou a online nákupom s ultimátnym cieľom: zvýšiť predaj a minimalizovať odklon od online nákupného košíka.
Viete, čo chcete dosiahnuť, dali ste dokopy schopný tím a máte pripravenú technológiu? Na záver máme pre vás dôležité varovanie: použitie akýchkoľvek nástrojov pokročilej analytiky alebo umelej inteligencie je vo veľkej miere závislé od kvality dát, ktoré máte k dispozícii.
Áno, vieme, už sme vám to hovorili. Ale naozaj vám to zopakujeme ešte raz: práve dáta sú pre vás kľúčom k tomu, aby vám AI v biznise pomáhala. V tomto prípade platí jednoduché pravidlo Trash In=Trash Out (neporiadok dnu=neporiadok von). Uponáhľané a nepremyslené projekty mnohokrát končia sklamaním a s nulovým alebo negatívnym prínosom váš biznis.
Držíme vám palce a keď budete potrebovať špecialistov na AI, ozvite sa nám, vieme, ako na to.
Pavol Kubán, CEO SCR technologies
scr@scr.sk
Ak sa vám blog páčil, zdieľajte ho ďalej. Viac užitočných blogov pre developerov nájdete na https://www.scrtechnologies.sk/blog/
Sledujte SCR technologies na Facebooku, LinkedIn a Instagrame